A new eigenstructure method for sinusoidal signal retrieval in white noise: estimation and pattern recognition
نویسندگان
چکیده
A new approach, in a framework of an eigenstructure method using a Hankel matrix, is developed for sinusoidal signal retrieval in white noise. A closed-form solution for the singular pairs of the matrix is defined in terms of the associated sinusoidal signals and noise. The estimated sinusoidal singular vectors are applied to form the noise-free Hankel matrix. A pattern recognition technique is proposed for partitioning signal and noise subspaces based on the singular pairs of the Hankel matrix. Three types of cluster structures in an eigen-spectrum plot are identified: well-separated, touching, and overlapping. The overlapping, which is the most difficult case, corresponds to a low signal-to-noise ratio (SNR). Optimization of Hankel matrix dimensions is suggested for enhancing separability of cluster structures. Once features have been extracted from both singular value and singular vector data, a fuzzy classifier is used to identify each singular component. Computer simulations have shown that the method is effective for the case of “touching” data and provides reasonably good results for a sinusoidal signal reconstruction in the time domain. The limitations of the method are also discussed.
منابع مشابه
A Robust Feedforward Active Noise Control System with a Variable Step-Size FxLMS Algorithm: Designing a New Online Secondary Path Modelling Method
Several approaches have been introduced in literature for active noise control (ANC)systems. Since Filtered-x-Least Mean Square (FxLMS) algorithm appears to be the best choice as acontroller filter. Researchers tend to improve performance of ANC systems by enhancing andmodifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANCapplications an online secondary pat...
متن کاملEstimation of harmonic interference parameters of surface-NMR signal using an adaptive method and residual signal power
Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for determining the water-bearing layers and subsurface resistivity structure. Harmonic interference is an inevitable interference in surface-NMR measurements. Accurate estimation of harmonic interference parameters (i.e., fundamental frequency, phase and amplitude) leads to better retrieval of power-line harmonics and...
متن کاملA Novel DOA Estimation Approach for Unknown Coherent Source Groups with Coherent Signals
In this paper, a new combination of Minimum Description Length (MDL) or Eigenvalue Gradient Method (EGM), Joint Approximate Diagonalization of Eigenmatrices (JADE) and Modified Forward-Backward Linear Prediction (MFBLP) algorithms is proposed which determines the number of non-coherent source groups and estimates the Direction Of Arrivals (DOAs) of coherent signals in each group. First, the MDL...
متن کاملGrid Impedance Estimation Using Several Short-Term Low Power Signal Injections
In this paper, a signal processing method is proposed to estimate the low and high-frequency impedances of power systems using several short-term low power signal injections for a frequency range of 0-150 kHz. This frequency range is very important, and thusso it is considered in the analysis of power quality issues of smart grids. The impedance estimation is used in many power system applicati...
متن کاملA Bayesian Approach for the Recognition of Control Chart Patterns
In this research, an iterative approach is employed to recognize and classify control chart patterns. To do this, by taking new observations on the quality characteristic under consideration, the Maximum Likelihood Estimator of pattern parameters is first obtained and then the probability of each pattern is determined. Then using Bayes’ rule, probabilities are updated recursively. Finally, when...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 45 شماره
صفحات -
تاریخ انتشار 1997